Inactivation kinetics of voltage-gated calcium channels in glutamatergic neurons are influenced by SNAP-25.

نویسندگان

  • Steven B Condliffe
  • Michela Matteoli
چکیده

SNAP-25 forms part of the SNARE core complex that mediates membrane fusion. Biochemical and electrophysiological evidence supports an accessory role for SNAP-25 in interacting with voltage-gated calcium channels (VGCCs) to modulate channel activity. We recently reported that endogenous SNAP-25 negatively regulates VGCC activity in glutamatergic neurons from rat hippocampal cultures by shifting the voltage-dependence of inactivation of the predominant P/Q-type channel current in these cells. In the present study, we extend these findings by investigating the effect that manipulating endogenous SNAP-25 expression has on the inactivation kinetics of VGCC current in both glutamatergic and GABAergic cells recorded from 9-13 DIV cultures. Silencing SNAP-25 in glutamatergic neurons significantly slowed the inactivation rate of P/Q-type VGCC current whereas alterations in SNAP-25 expression did not alter inactivation rates in GABAergic neurons. These results indicate that endogenous SNAP-25 plays an important role in P/Q-type channel regulation in glutamatergic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons.

In addition to its primary role as a fundamental component of the SNARE complex, SNAP-25 also modulates voltage-gated calcium channels (VGCCs) in various overexpression systems. Although these studies suggest a potential negative regulatory role of SNAP-25 on VGCC activity, the effects of endogenous SNAP-25 on native VGCC function in neurons are unclear. In the present study, we investigated th...

متن کامل

Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations.

SNAP-25 is a SNARE protein implicated in exocytosis and in the negative modulation of voltage-gated calcium channels. We have previously shown that GABAergic synapses, which express SNAP-25 at much lower levels relative to glutamatergic ones, are characterized by a higher calcium responsiveness to depolarization and are largely resistant to botulinum toxin A. We show here that silencing of SNAP...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses.

SNAP-25 is a key component of the synaptic-vesicle fusion machinery, involved in several psychiatric diseases including schizophrenia and ADHD. SNAP-25 protein expression is lower in different brain areas of schizophrenic patients and in ADHD mouse models. How the reduced expression of SNAP-25 alters the properties of synaptic transmission, leading to a pathological phenotype, is unknown. We sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Channels

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2011